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In the years since the first human genome 
was sequenced at a cost of over $3 billion, 
technological advancements have driven 
the price below $1,000, making personal 
genome sequencing affordable to many 
people. Personal genome sequencing has the 
potential to enable better disease prevention, 
more accurate diagnoses, and personalized 
therapies. Furthermore, sharing genomic data 
with researchers promises identification of the 
causes of many diseases and the development 
of new therapies. However, sequencing costs, 
data privacy concerns, regulatory restrictions, 

and technical challenges impede the growth of 
genomic data and hinder data sharing. 

In this article, we propose that these challenges 
can be addressed by combining decentralized 
system design, privacy-preserving technologies, 
and an equitable compensation model in a 
platform that vests control over data with 
individual owners; ensures transparency and 
privacy; facilitates regulatory compliance; 
minimizes expensive data transfers; and shifts 
the sequencing costs from consumers, patients, 
and biobanks to researchers in industry and 
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academia. We exemplify this by describing the 
implementation of Nebula, a distributed genomic 
data generation, sharing, and analysis platform.

The Human Genome Project has sequenced 
and assembled the first human reference 
genome at a cost of over $3 billion.1 Since then, 
development of next-generation sequencing 
technology has resulted in exponentially 
decreasing sequencing cost (Figure 1).2 Today, 
the sequencing of a whole human genome 
costs less than $1,000. This price is projected 
to drop to $100 in the next few years.3 The 
exponentially decreasing DNA sequencing 
costs have made personal genome sequencing 
affordable to patients as well as healthy 
individuals. 

Personal genome sequencing is becoming 
more common as prices decline, but most 
genetic tests to date have been performed 

using DNA hybridization microarrays. These 
tests are referred to as genotyping and they 
assess the presence or absence of genetic 
variants associated with certain traits. For 
a cost less than $100, genotyping typically 
reads out only ~0.02% of the human genome, 
at predefined positions, often missing 
health-relevant genetic variants that must be 
reported. In addition, variant identification 
at a small number of positions does not 
allow discovery of novel variants, including 
those that cause disease; the majority of 
these variants are distributed throughout 
the genome and remain undiscovered.4 This 
limits the usefulness of genotyping data to 
researchers.

OPPORTUNITIES
As genomic sequencing becomes more affordable, 
it opens up opportunities for individuals as well as 
researchers in academia and industry.

Figure 1—Human genome sequencing cost, 2001–2017.
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Personal genome sequencing can support 
data-driven decision-making for health-related 
issues. Studies estimated that ~2% of people 
carry genetic variants that cause or predispose 
them to a wide variety of diseases at various 
levels of severity, the majority of which can be 
preventable or treatable.5 In addition, every parent 
carries, on average, approximately five genetic 
variants that might cause diseases in offspring 
if the other parent carries the same variant.6 The 
presence of certain genetic variants also has 
been associated with adverse effects for ~7% of 
Food and Drug Administration-approved drugs.5 
Personal genome sequencing can also help 
healthy individuals make better lifestyle choices. 
For example, genetic variants have been shown 
to cause sensitivities to certain nutrients7–9 and 
to increase risks of sports-related injuries.10–12 In 
the future, advancement in understanding human 
genetics will make personal genome sequencing 
more insightful, while correcting pathological 
genetic variants will become possible as more 
and more gene therapies enter clinical trials.13

Researchers study genomic data sets to 
identify genetic variants that cause diseases. 
This enables the research and development 
of therapies targeting disease-associated 
genes with increasing specificity. Genomics-
guided therapeutic discovery has been applied 
successfully to many types of cancers, rare 
genetic diseases, and, increasingly, common 
complex diseases.14 Furthermore, genomics-
guided patient cohort recruiting can reduce 
the failure rate of clinical trials by enriching 
for likely responders and reducing reducing 
adverse reactions. This approach to clinical trials 
promises to reduce surging drug development 
costs and lead to more drugs reaching the market 
and benefiting patients.15

These opportunities are recognized by the 
biopharma industry. For example, the leading 

personal genomics company 23andMe received 
$60 million from Genentech16 and $300 million 
from GlaxoSmithKline17 for access to genotyping 
data collected from its customers. Other 
biopharma companies have launched their own 
sequencing projects. AstraZeneca announced it 
would sequence 2 million human genomes,18 and 
Regeneron is leading a $100 million consortium 
to sequence approximately 500,000 samples 
collected by the UK Biobank.19 

CHALLENGES
Multiple obstacles hinder the realization of 
opportunities offered by personal genomics. 
Many people are deterred by the costs of 
personal genome sequencing, as well as concerns 
over genomic data privacy. Research is hampered 
by the resultant scarcity of genomic data and is 
further compounded by difficulties with respect 
to data access.

In 2018, the number of genotyped people 
surpassed 10 million and is expected to grow to 
more than 100 million by 2021.20 This growth 
is driven by a combination of factors, notably 
consumer interest in ancestry analysis coupled 
with a decrease in genotyping costs below 
$100.21 In contrast, consumer interest in whole 
genome sequencing has grown slowly due to 
a significantly higher cost. A recent survey 
revealed that only ~3% of people are willing to 
pay >$1,000 for whole genome sequencing.22 
For the majority of consumers, whose primary 
interest in the area can best be described as 
nonmedical “infotainment,” the benefits of 
sequencing over genotyping do not justify the 
significantly higher cost.

At the same time, the surge in popularity of 
genetic testing, forensic utilization of genetic 
databases,23 and the purchase of genetic data 
by biopharma companies24 have increased 
consumer and media attention to genetic 
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data privacy. Studies show that privacy concerns 
are legitimate, as data sharing policies of 
many personal genomics companies do not 
fulfill transparency guidelines with regard 
to the confidentiality or sharing of customer 
genetic data.25 These developments are likely 
to exacerbate reported privacy concerns over 
genetic data26,27 and deter personal genomic 
sequencing. 

For researchers, low adoption of personal 
genome sequencing has resulted in low 
availability of genomic data. According to 
estimates, only ~500 thousand human genomes 
had been sequenced by 2017.3 This is detrimental 
for research because very large genomic 
data sets are necessary to find links between 
genetic variants and traits, such as disease 
predispositions. Finding such links is difficult 
because most traits are the product of complex 
interactions of many genetic variants, while the 
effects of individual genetic variants are, on 
average, very small.28 Low diversity of genomic 
data sets further compounds the search for links 
between genetics and disease.29 

The scarcity of genomic data is exacerbated by 
difficulty in data access due to fragmentation of 
genomic data across proprietary data silos.30 Data 
sharing is further hindered by the large size of 
genomic data, which impedes data transfer over 
networks.31 In addition to logistic and technical 
challenges, data access is often complicated by 
restrictive government regulations that hinder 
data sharing.32 Low availability of genomic 
data combined with data silos also results in 
high prices, making it unaffordable to many 
researchers. 

PREVIOUS WORK
Solutions to the challenges outlined above have 
been proposed previously. Federated data storage 
systems have been implemented to facilitate 

genomic data sharing, privacy-preserving 
computing has been utilized to protect genomic 
data privacy, and different compensation models 
have been explored to incentivize genomic data 
sharing. 

Genomic Data Sharing
The GA4GH Beacon Project33 and i2b2 
SHRINE34 are two of the most advanced 
systems for biomedical data sharing. Both are 
networks that enable participating institutions 
to connect their genomic (and clinical) databases 
and process queries about the presence of 
genetic variants and traits, including medical 
conditions. This federated model minimizes 
expensive data transfers and enables institutions 
to retain control of their data. This addresses 
privacy, regulatory, and technical challenges 
that are associated with centralized storage and 
transfers of genomic data.

However, there are limitations. First, 
functionality is currently limited to simple 
queries. Orchestrated, distributed computations 
required for data processing and analysis are 
currently not supported. Second, participation 
is limited to academic research institutions and 
hospitals. There are no patient- or consumer-
focused portals that would enable individuals 
to easily contribute their personal genomic 
data. Third, decentralized governance and 
compensation mechanisms have not been 
implemented. 

Genomic Data Protection
Distributed genomic data storage and computing 
can help protect genomic data privacy. However, 
data owners cannot always maintain in-house 
servers and therefore they often must outsource 
data storage and computing to third parties, 
such as cloud service providers. To protect 
the privacy of genomic data that are shared 
with untrusted third parties, encryption-based 
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privacy-preserving techniques have been adopted 
for genomics. These techniques enable third 
parties to execute computations and return results 
without having access to plaintext genomic data. 

Privacy-preserving techniques have been applied 
previously to distributed medical and genomic 
databases. For example, MedCo integrates 
with the i2b2 SHRINE framework and uses a 
homomorphic data encryption scheme to enable 
outsourcing of genomic data storage and query 
execution to untrusted third parties.35 Another 
example is the Secure Multi Party Query 
Language framework that implements similar 
functionality and privacy guarantees using secure 
multiparty computations.36 Data can also be 
protected using trusted hardware. An example 
is the PRINCESS framework that executes 
computations on genomic data inside protected 
memory regions of Intel microprocessors.37 

Compensation Models 
Over the past few years, personal genomics 
companies have explored different models to 
compensate individuals for contributing their 
personal genomic data to research studies. In 
2016, Genos offered to help its customers sell 
their genomic data to researchers.38 A similar 
model that uses a cryptocurrency instead of fiat 
money was adapted by EncrypGen in 2017.39 
Most recently, LunaDNA announced that it 
would compensate genomic data contributors 
with company stock.40 These models are similar 
in that individuals who want to participate must 
already own their personal genomic data, or 
choose to purchase genetic testing because of the 
prospect they will be rewarded later for sharing 
the data.

PERSONAL GENOMICS 2.0
The traditional model for genomic data 
generation and sharing that has been adopted by 
most personal genomics companies contributes 

to the challenges described in the previous 
sections. This model requires consumers to pay 
for genetic testing and result interpretation, 
while personal genomics companies often take 
ownership of the generated genomic data and 
sell it to biopharma companies (Figure 2). This 
model requires consumers to carry the costs 
and relinquish ownership and control of their 
genomic data, which discourages genetic testing. 
In addition, this model promotes genomic data 
fragmentation across private data silos, which 
hampers data access and increases data prices.

We propose to combine and extend previous 
work on genomic data sharing networks, privacy-
preserving technologies, and compensation 
models to create a new model for personal 
genomics that may overcome these challenges 
(Figure 3). 

First, the functionality of genomic data sharing 
networks must be extended beyond simple 
queries. This requires a network that can be 
integrated with a full-fledged bioinformatics 
platform that supports genomic data processing 
and analysis. Implementing this functionality 
would bundle fragmented genomic data and 
make it available for analysis on a single 
network, thereby facilitating data access for 
researchers.

Second, the data sharing network must expand 
beyond research institutions and must be 
accessible to individuals who want to share their 
personal genomic data. However, the resulting 
network decentralization will necessitate a more 
democratic governance model. This potentially 
can be achieved by integrating blockchain 
technology, which holds the promise of enabling 
decentralized, self-governing networks.

Third, the privacy of genomic data must be 
protected. Data access control on the blockchain 
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can ensure transparent consent management, 
while privacy-preserving technologies can help 
protect shared genomic data. Together with 
the distributed computing model that “brings 
algorithms to the data,” these technologies can 
enable network participants to retain ownership 
and control of their genomic data, thereby 
reducing privacy concerns and incentivizing data 
sharing.

Fourth, genome sequencing and data sharing 
also must be incentivized by implementing 
subsidy and compensation mechanisms. The 
decentralized data sharing model can facilitate 
this, as it enables researchers to connect directly 
with individuals with traits of interest, subsidize 
their genome sequencing costs, and compensate 
them for data sharing. Elimination of middlemen 

also may result in a reduction in genomic data 
prices and thus empower more researchers to 
access large genomic data sets. 

DESIGN CONSIDERATIONS
To implement a system as outlined in 
the previous section, one must integrate 
a bioinformatics platform that supports 
distributed data storage and computing with a 
suitable blockchain framework, as well as with 
techniques for privacy-preserving computing. 
Here, we review and evaluate existing options. 

Bioinformatics Platforms
Bioinformatics platforms have been developed to 
facilitate organization of genomic data; to enable 
parallelized, high-performance computing with 
support for complex dependencies; and to allow 

Figure 2. The traditional model for genomic data generation and sharing.
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a modular pipeline design that is flexible and 
ensures reproducible results.41 Table 1 shows a 
comparison of popular bioinformatics platforms. 

The development of bioinformatics platforms 
has been driven by exponentially growing 
genomic data and marked by adaption of 
multiple computing trends. Storage and 
processing of genomic data has moved from 
local servers to remote clouds. This has enabled 
scalable data storage and computing and 
facilitated access sharing to genomic data sets. 
To scale beyond single clouds, efforts are being 
made to create federated cloud environments 
that could enable distributed data storage 
and computing.48,49 Furthermore, the growth 
of genomic data and development of new 
bioinformatics tools that must be integrated 
into workflows are driving the development of 
standardized workflow description languages, 

containerization of computing environments, 
and utilization of standardized application 
programming interfaces (APIs). 

Based on these considerations, Arvados and 
DNAstack appear as suitable choices for the 
proposed genomic data sharing platform. Both 
platforms have an API-focused architecture and 
data sharing functionality. DNAstack integrates 
with the GA4GH Beacon Network, while 
Arvados supports platform-agnostic, federated 
cloud environments and has an open-source 
codebase.

Blockchain Frameworks
Blockchain technology has three use cases 
in the proposed system. First, the need to 
provide transparent consent management can 
be addressed by the ability of blockchains 
to store data access permissions on an 

Figure 3—Alternative model for personal genomics that may overcome challenges.
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immutable public ledger. Second, blockchains 
can enable implementation of decentralized 
systems governed by network participants. 
Third, an immutable ledger can facilitate 
verification of the integrity of decentrally 
stored data. 

Based on these use cases, one can create a 
set of requirements that a suitable blockchain 
framework must fulfill. First, consent 
management requires that the identity of 
researchers who request to access data are 
known to data owners. To this end, network 
access must be limited to data buyers whose 
identity has been verified. Therefore, consent 
management requires a blockchain that supports 
permissioned access. 

Second, a large, decentralized data marketplace 
requires smart contract functionality and high 
transaction throughput. Private blockchains can 
achieve higher transaction throughputs than 
public blockchains because the ability to write 
transactions to the blockchain is limited to a 
group of permissioned validator nodes. However, 
this makes private blockchains more centralized 
and less dependable.

Based on these requirements, permissioned 
blockchains frameworks such as Exonum and 
Hyperledger Fabric appear most suitable (Table 2). 
Hyperledger Fabric has been more widely adopted, 
but Exonum offers transparency and security that 
is comparable to public blockchains.

First, Exonum-based blockchains offer public 
read access but restrict write access to selected 
validator nodes. By making read access to the 
blockchain public, transaction audit does not 
rely on trusted parties. Exonum transactions 
are verified in real time by all nodes. Thus, 
all network participants are able to audit the 
blockchain state collectively. 

Second, Exonum supports anchoring of 
transaction logs in the Bitcoin blockchain. 
Hashes of the Exonum blockchain state are 
periodically written to the Bitcoin blockchain, so 
even if all permissioned Exonum nodes collude, 
the transaction history cannot be falsified unless 
the attacker succeeds in compromising the 
Bitcoin blockchain as well.

Third, Exonum uses a byzantine fault-tolerant 
(BFT) consensus algorithm that protects against 

Table 1. Comparison of bioinformatics platforms
Criteria Arvados42,43 DNAstack44 Seven Bridges45 DNAnexus46 Galaxy47

Hardware Federated 
clouds and 
servers

Google Cloud with 
Beacon Network 
integration

Clouds Clouds Local servers

Pipeline design API-based; 
web GUI

API-based; web 
GUI

Web GUI Web GUI Web GUI

Containers Yes Yes Yes Yes Yes
Workflow 
language

CWL WDL CWL Custom Custom

Open source Yes No No No Yes
Platform launch 
year 

2013 2014 2012 2010 2005

API: application programming interface; CWL: Common Workflow Language; GUI: graphical (rather than textual) user interface; 
WDL: Workflow Description Language.
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malicious behavior of permissioned nodes. 
In contrast, Hyperledger and other private 
blockchains rely on less computationally 
intensive fault-tolerant (FT) consensus 
algorithms that protect against node breakdown 
but not malicious behavior. Exonum offers both 
BFT consensus and high transaction throughput 
because it is written in Rust, one of the fastest 
programming languages. Furthermore, Rust 
offers memory safety which eliminates many 
vulnerabilities that are commonly exploited by 
hackers. 

Privacy-Preserving Technologies 
Table 3 shows a comparison of privacy-
preserving technologies that all have been 
applied to secure genomic data.53 Fully 
homomorphic encryption and secure multiparty 
computations enable computations on encrypted 
data that generate encrypted results. These 
encrypted results, when decrypted, correspond to 
the results of the same computation on plaintext 
data. However, fully homomorphic encryption 
is very slow and typically suffers from very 
large ciphertext expansion. The limitation of 
secure multiparty computation protocols is 
that they require transfers of very large data 

amounts during the computation. It is possible, 
however, to improve the performance of fully 
homomorphic encryption and secure multiparty 
computations significantly if they are optimized 
for specific use cases. Practical performance 
levels have been demonstrated for queries on 
genomic data54,55 and genome-wide association 
studies (GWAS).56

Alternative technologies have drawbacks of 
their own. Intel Software Guard Extensions 
technology is a hardware-assisted approach 
that protects data privacy by executing 
computations inside private memory regions. It 
offers good performance but has been affected 
by vulnerabilities that can compromise data 
privacy.57 Differential privacy methods protect 
data privacy by introducing randomness. 
However, obfuscation of computation results can 
complicate interpretation of studies.53 

NEBULA
In this section, concepts and design 
considerations outlined in the previous sections 
are illustrated by describing the technical 
implementation of Nebula—a decentralized 
genomic data generation, sharing, and analysis 

Table 2. Comparison of blockchain frameworks
Criteria Exonum50 Hyperledger Fabric51 Ethereum52

Read access Public Private Public
Write access Private Private Public
Consensus Byzantine fault-tolerant 

(BFT)
Fault-tolerant (FT) Proof of work (PoW)

Transactions per 
second (TPS)

~3,000 ~3,000 ~15

Smart contracts Yes (Rust, Java) Yes (Go, Java) Yes (Solidity)
Light clients Yes No Yes
Public blockchain 
anchoring

Yes No NA

Open source Yes Yes Yes
NA: not applicable.
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platform. Nebula integrates the Arvados42,43 
bioinformatics platform (github.com/curoverse/
arvados) with the Exonum50 blockchain 
framework (github.com/exonum) and a fully 
homomorphic data encryption scheme (Figure 4). 

Arvados has two core services: Keep and 
Crunch. Keep is a distributed content- 
addressable storage system that enables scalable 
storage of genomic big data, high throughput 
data access, and efficient data management. 
Crunch is a workflow management engine 
that enables flexible creation and parallelized 
execution of data analysis pipelines and 
generation of reproducible results. Arvados 
implements a distributed data storage and 
computing model that minimizes required data 
transfers. This helps address big data challenges, 
regulatory restrictions, and data privacy risks. 

Utilization of a homomorphic data encryption 
scheme enables implementation of privacy-
preserving queries on genomic data. The 

intention is to preserve data privacy by enabling 
investigators to query the whole database 
and discover their data of interest, without 
compromising the privacy of the queried data. 
In the future, it should be possible to extend the 
application of privacy-preserving technologies to 
GWAS and other computations.

The Nebula blockchain is an Exonum-based 
blockchain through which the Nebula network 
will be governed, consent will be documented, 
and the data will be secured. Exonum-based 
blockchains have three types of nodes: auditors, 
light clients, and validators. Auditors are 
full nodes that maintain a copy of the entire 
blockchain content and can generate transactions. 
Light clients also can generate transactions, but 
they replicate only information that is relevant 
to them instead of the whole blockchain content. 
Validators are permissioned nodes that verify 
transactions received from auditors and light 
clients and write new blocks to the blockchain. 
While the current implementation of Nebula 

Table 3. Comparison of privacy-preserving technologies

Criteria

Fully 
Homomorphic 
Encryption

Secure  
Multiparty 
Computations

Intel  
Software Guard 
Extensions

Differential  
Privacy

Principle Computations 
(additions AND 
multiplications) 
on ciphertexts

Distributed 
computations on 
ciphertexts

Computations inside 
private memory 
regions

Introduction of 
randomness to 
data/results of 
computations

Computation 
time 

Very slow Slow Fast Fast

Memory usage Very high High Low Very low
Communication 
cost

High Very high Low Low

Specific 
limitations

None None Vulnerabilities have 
been discovered; 
requires Intel CPUs

Noise makes 
interpretation 
of results more 
difficult 

CPU: central processing unit.
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uses the Exonum framework, other permissioned 
blockchains, in particular Hyperledger Fabric, 
can be used as well.

The Nebula network has four types of 
participants: data owners, network maintainers, 
data buyers, and storage and compute providers.

• � Data owners can be private individuals or 
institutions. They will store encrypted genomic 
data in public or private clouds that are part 
of the Keep storage system. They will be able 
to control access to their data and receive 

payments to their wallets by operating light 
clients on the Nebula blockchain. 

• � Network maintainers are organizations 
that operate validator nodes on the Nebula 
blockchain. Validator nodes will collectively 
control data access by managing encrypted 
key shares, verifying transactions, and keeping 
track of data stored in Keep and computations 
executed by Crunch.

• � Data buyers are researchers who wish to 
obtain access to genomic data. They will be 
operating auditor nodes to keep a local copy of 

Figure 4—Overview of the Nebula platform.

https://doi.org/10.30953/bhty.v1.34
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the metadata, which they will use to locate data 
stored in Keep, verify data integrity, and keep 
track of access permissions. Data buyers will 
be able to query homomorphically encrypted 
data, utilize smart contracts to acquire data 
access permissions from data owners, and use 
Crunch to run analysis pipelines.

• � Storage and compute providers are data 
owners that operate private clouds, or third 
parties that offer storage and computing 
services (e.g., Google, Amazon, and 
Microsoft). They will form a federated cloud 
environment that hosts the Keep storage 
system and Crunch-managed containers 
within which computations are executed.

The development of Nebula is ongoing. Some 
parts of the platform, in particular, Arvados, 
have been fully implemented over the past 
few years and are already being deployed by 
various organizations. Other parts of Nebula, in 
particular, the homomorphic encryption schemes, 
are a relatively recent addition and are not yet 
fully integrated. A report on the progress of our 
work was published in a white paper.58 Here we 
describe the implementation of Nebula in greater 
detail but also revise some previously made 
design choices.

Data Generation 

Genomic data
Personal genome sequencing cost is a significant 
factor in preventing more widespread consumer 
adoption. Therefore, a key consideration in the 
design of the Nebula platform was to provide a 
mechanism to shift sequencing costs from data 
owners (e.g., consumers and biobanks) to data 
buyers (e.g., pharma and biotech companies). 
This is being implemented by enabling data 
buyers to query the Nebula database, identify 
data sets of interest, and pay the sequencing costs 
to generate and access genomic data (Figure 5). 

To this end, the Nebula platform enables a 
data buyer to create a smart contract that 
specifies the blockchain addresses of data 
owners previously identified in a query and 
send cryptocurrency tokens to that smart 
contract. The data owners are notified that 
a buyer has offered to pay their sequencing 
costs. If a data owner accepts the offer by 
executing the smart contract, the deposited 
tokens are sent to a sequencing provider. 
Next, the data owner receives a saliva 
collection kit and submits a saliva sample 
to the sequencing facility. The sample 
is sequenced, and the genomic data are 
deposited on a Keep server specified by 
the data owner. Data hashes, along with 
blockchain addresses of all data owners and 
buyers, are written to the blockchain. The 
data buyer who paid the sequencing costs is 
permitted to access and analyze the data. The 
data owner receives interpretations of his 
genomic data and is able to share data access 
with additional data buyers. 

Phenotypic data
Information about medical conditions and 
other traits is referred to as phenotypic data. 
These data are generated primarily through 
survey questions. The platform utilizes a 
phenotyping toolkit that maps plain-language 
survey responses to clinical descriptions 
in Human Phenotype Ontology (HPO)59 
format. Survey data can be verified using two 
approaches. First, comparing the incidence of 
medical conditions in the general population to 
the incidence observed in the platform’s data 
set will enable identification of survey results 
that deviate from the expected results. Second, 
survey data can be verified by referencing 
Electronic Health Records (EHRs) imported 
through the Fast Healthcare Interoperability 
Resources (FHIR) API.

https://doi.org/10.30953/bhty.v1.34
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Data Encryption
Privacy of genomic and phenotypic data are 
protected through client-side encryption by 
data owners and encryption key management 
by blockchain validator nodes. To enable data 
buyers to discover data prior to purchasing data 
access, the platform implements a lattice-based 
fully homomorphic encryption scheme. To this 
end, blockchain validator nodes generate public–
private key pairs and construct a single collective 
public key (Figure 4). Data owners encrypt their 
survey responses and genetic variant lists with 
the collective public key and upload them to 
a Keep server. The homomorphic encryption 
scheme protects data privacy by enabling data 
buyers to execute Structured Query Language 
(SQL)-like queries on the homomorphically 
encrypted data. Files that contain raw sequencing 
data and are not used for queries are Advanced 

Encryption Standard (AES) encrypted. The AES 
keys are encrypted with validator public keys and 
bundled with the encrypted data. 

Data Storage

Data
Genomic data are stored in Keep, a distributed 
content-addressable storage system that retrieves 
files based on their content. Addresses of files 
are generated through cryptographic digest of 
their content. Keep combines content-addressing 
with the distributed storage architecture of the 
Google File System.60 Keep splits encrypted files 
into 64-megabyte blocks and stores them in an 
underlying object store or file system (Figure 6). 
The content addresses of the blocks are stored on 
the blockchain and are used to find data locations 
and check data integrity.

Figure 5—Genome sequencing subsidy payment on the blockchain.
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Keep is designed for storing genomic and other 
types of biomedical big data. First, its content-
addressing offers high-speed storage and retrieval 
by eliminating an indexing service, a potential 
bottleneck and point of failure, and enabling 
direct connections between the storage and 
compute subsystems. Second, content-addressing 
works well for data written to disk once and read 
many times, a characteristic of genomic data, 
as it does not change over time but is accessed 
frequently. Third, fixed-size data blocks allow 
scalable distributed storage of big data, and 
content-addressing enables easy file verification, 
which is particularly important for distributed 
databases.

Keep is designed to be a distributed, hybrid 
storage system. Data owners can choose to 
store their data in clouds such as Amazon Web 
Services (AWS), Google Cloud Platform (GCP), 
and Microsoft Azure, or on private bare-metal 
servers. Decentralized file storage solutions such 
as InterPlanetary File System (IPFS), Sia, and 

Storj can potentially be supported if computing 
on stored data becomes possible. Data owners 
can register new, personal cloud instances or 
store their encrypted data in shared clouds. 
Based on phenotypic information, data sets that 
are likely to be analyzed together are stored in 
physical proximity, which minimizes slow and 
expensive data transfers.

As sequencing data are processed, different 
file formats are generated and stored in Keep. 
Typically, Keep stores FASTQ files that contain 
raw sequencing data (~200 gigabytes/genome), 
Binary Alignment Map files that store aligned 
sequencing reads (~100 gigabytes/genome), 
and Variant Call Format files that store genetic 
variants (~200 megabytes/genome). Additionally, 
Nebula uses the Compact Genome Format (CGF) 
to generate compact genomic data summaries. 
Genomes in the CGF format are represented by 
pointers referencing sequences in a tile library 
(Figure 7). CGF offers a consistent, standardized 
representation of genomic data that makes 

Figure 6—Data blocks are stored in Keep. Block hashes are stored on the blockchain.
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different types of sequencing and genotyping 
data interoperable. The CGF representation 
is also very space efficient (~30 megabytes/
genome), which facilitates file transfers, and 
enables fast queries and efficient analysis.60

Tabular phenotypic data generated through 
surveys and imports of EHRs are stored in 
physical proximity with associated genomic data. 
In contrast to static genomic data, phenotypic 
information is much more dynamic and smaller 
than genomic data. This makes utilization of the 
Google File System and content addressability 
unsuitable. Therefore, phenotypic data files are 
stored as Not only SQL documents. 

Metadata
To organize data stored in Keep, Nebula stores 
metadata on the blockchain in a key-value store. 
When new data are added to Keep or existing 
data are modified, blockchain transactions 
are generated. Validator nodes verify these 

transactions, add new blocks to the blockchain, 
and update the key-value store. Storage of 
metadata on an immutable ledger helps secure 
the integrity of the decentralized Nebula 
database. To this end, multiple column families 
are implemented:

•	 Data ownership is registered by assigning each 
block content address the blockchain address of 
the data owner who added the block to Keep.

•	 Data locations are described by assigning each 
block content address the Uniform Resource 
Locator (URL) of a Keep server.

•	 Data integrity is verified by re-hashing data 
blocks and comparing their hashes with content 
addresses that are stored on the blockchain.

•	 Data buyer identities, including names and 
institutional affiliations, are verified, linked 
to blockchain addresses, and stored on the 
blockchain.

•	 Access permissions to the Nebula platform and 
data stored in Keep also are managed on the 
blockchain.

Figure 7—Simplified representation of a tile library and a Compact Genome Format (CGF) file. The 
rectangles represent tile variants at different positions and the dotted line illustrates the tile composition of 
specific genome.
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Data Discovery
Utilization of fully homomorphic encryption is 
intended to address the privacy barrier to data 
sharing. It enables data owners to make their data 
available for discovery without privacy risks, 
while at the same time allowing data buyers 
to explore the database before purchasing data 
access to perform analyses.

To this end, data buyers will construct a SQL-like 
query and encrypt it with the collective public 
key that has been constructed by validator nodes 
and used to encrypt phenotypic information 
and genetic variant lists. The encrypted query is 
executed on homomorphically encrypted data 
and an encrypted result is generated. The query 
result is re-encrypted by the validator nodes 
under a public key provided by the data buyer 
and shared with data buyer who can now decrypt 
it with its private key. A query can return the 
number of data owners that matched the specified 

criteria, as well as their blockchain addresses. 
This enables data buyers to connect with data 
owners to pay sequencing costs or to purchase 
access to existing genomic data (Figure 8).

Data Analysis
The Arvados container and pipeline management 
engine, Crunch, executes computations on data 
stored in Keep. Crunch implements a distributed 
computing model whereby workflows, and not 
the genomic data, are moved between cloud 
instances whenever possible. Highly distributed 
genomic data processing is possible because 
many intensive bioinformatics computations, 
such as alignment and variant calling, are 
performed on single genomes and are easily 
parallelizable. To this end, Crunch executes 
tasks inside Docker containers that are created 
physically close to the data locations in Keep 
and distributes computations between many 
processing units.

Figure 8—Secure data discovery through queries on homomorphically encrypted data.
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Crunch ensures result reproducibility through 
standardization of computing workflows 
using Common Workflow Language (CWL),61 
which enables connection of open-source 
and proprietary bioinformatics software into 
workflow pipelines that are flexible, portable, 
and scalable. Crunch can access CWL pipelines 
stored in public or private Git repositories such 
as GitHub.

CWL can be used to implement end-to-
end bioinformatics analysis pipelines. 
Typically, CWL pipelines include common, 
computationally intensive “secondary analysis” 
tasks, such as alignment of sequencing reads to a 
reference genome and variant calling. However, 
“tertiary analysis” tasks, which often involve 
computing on genomic data sets rather than 
single genomes and are less standardized, also 
can be incorporated into CWL pipelines. Typical 
examples are statistical tests that are used in 
GWAS to identify correlations between genetic 
variants and phenotypes. For such tertiary 
analysis tasks, Nebula uses Lightning,62 a system 
for high-performance, in-memory computations 
on genomic data in the CGF. Lightning integrates 
into CWL pipelines and enables fast queries and 
execution of complex machine learning tasks on 
large genomic data sets.

CWL pipelines can also be used to analyze and 
interpret personal genomic (and phenotypic) 
data. First, users can build their own custom 
pipelines to analyze their personal data and 
also share pipelines among each other using 
public Git repositories. Second, developers 
can build and monetize genomic apps. To this 
end, CWL pipelines can be stored in private 
repositories, and access by Crunch may require 
a smart contract-mediated token payment to the 
pipeline developer. The approach of bringing 
apps to the data facilitates protection of personal 
information. 

Security
Homomorphic encryption can enable privacy-
preserving queries for data discovery. However, 
most computations that are necessary for 
typical genomic data analysis workflows do not 
achieve practical runtimes when executed on 
homomorphically encrypted data. Therefore, 
other security mechanisms must be utilized. 

Platform access control
To protect data owners and their data, data 
buyers are required to go through a partially 
decentralized, three-step permission process. 
The first step is data buyer authentication. 
Here, a blockchain validator node will verify a 
data buyer’s personal and institutional identity. 
Blockchain addresses of verified data buyers will 
be added to the blockchain metadata store. Data 
buyers will then be able to connect to Nebula 
REST API servers and use Crunch to execute 
pipelines on data stored in Keep. Data buyer 
authentication will enable data owners to verify 
data buyer identity before agreeing to share 
data access. Furthermore, immutable storage of 
data buyer identities on the blockchain enables 
identification of data buyers who have violated 
consent agreements or have bypassed pipeline 
execution control.

Pipeline execution control
To protect data privacy, the platform design 
incorporates the ability to define approved 
bioinformatics tools and CWL workflows. 
The intent is to prevent data buyers from 
downloading genomic data or executing any 
computations that attempt to extract a large 
amount of information about individual data 
owners. This approach was chosen because it 
has the ability to provide a sufficient level of 
data privacy protection without significantly 
restricting data buyers. 
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Data access control
The first task in every CWL pipeline is to get 
access to the input data (Figure 9). Here, a 
data buyer executes a smart contract on the 
blockchain. The inputs are the data buyer’s 
blockchain address and the content addresses of 
all data blocks of the input files. The data buyer 
also deposits tokens inside the smart contract 
and defines a token payout for data access. When 
a data owner’s light client synchronizes with 
the blockchain, the data owner is notified of the 
data access request. The data owner can decide 
about data sharing based on offered payment and 
identity of the data buyer. The data owner grants 
data access by executing the smart contract. 
The blockchain validator nodes then verify the 
integrity of the requested data stored in Keep by 
comparing data hashes with the content addresses 
stored on the blockchain and collectively 

re-encrypt the data under the data buyer’s public 
key. Finally, the data buyer’s access permission 
is registered on the blockchain and tokens are 
sent from the smart contract to the data owner’s 
wallet. Crunch can now load decrypted data into 
a Docker container and begin pipeline execution. 

Governance
The Nebula blockchain can be used to enable 
Nebula network participants to collectively 
govern the network, in particular, to help 
maintain data protection. To this end, for 
example, Token-Curated Registries (TCRs)63 
can be used to conduct elections that determine 
validator nodes or whitelist data analysis 
pipelines. TCRs are lists that are curated 
decentrally by token holders. Importantly, 
economic incentives drive the token holders to 
curate the list’s contents judiciously. In brief, 

Figure 9—Data access control and data purchases.
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network participants can cast votes whereby the 
weights of votes scale with their token holdings. 
Since token holders are invested in the network, 
they are incentivized to maintain its proper 
operation that ensures data protection. 

DISCUSSION
The obstacles that hinder personal genome 
sequencing and genomic data sharing have a 
significant impact on the progress of research 
into disease prevention, drug development, 
and other crucial aspects of human health. We 
described one approach to overcoming these 
obstacles, using a combination of multiple 
technologies. A number of challenges remain 
to be addressed regarding data privacy, data 
validation, data curation, and data economics.

Data privacy protection requires decentralization 
of data generation and further development of 
privacy-preserving technologies. Today, genomic 
data generation is limited to laboratories that 
own expensive sequencing machines operated 
by experienced technicians. Centralized genomic 
data generation leads to data privacy risks that 
may be averted if sequencing is decentralized. 
We anticipate that this will become possible soon 
as new technologies are being developed that 
would enable compact, affordable, and easy-to-
operate sequencing machines.64 Data privacy 
protection is also impaired by current limitations 
of privacy-preserving technologies that do not 
allow complex computations on large data sets 
and require extensive optimization for every 
use case, which hinders effective data analysis. 
However, practicality of privacy-preserving 
technologies has been steadily increased over 
the past few years, and we anticipate continuing 
progress in the future.

Data validation and curation are another area of 
challenge. Validation of genomic data requires 
assistance of the sequencing facilities that have 

produced the data. If the source of the genomic 
data is unknown, or the sequencing facility 
does not cooperate, genomic data cannot be 
validated. A possible solution to this problem 
can be a model that compensates personal 
genomics companies and other genomic data 
producers for validating data authenticity. Data 
collected from different sources also must be 
made interoperable. It is particularly challenging 
to curate health records and other types of 
phenotypic data. However, standards such as 
FHIR are being developed very actively and 
have already enabled applications that can collect 
EHRs across different health systems.65

The idea of a personal data marketplace is very 
new and has not yet been implemented at scale. 
A personal data marketplace is likely to differ 
from traditional marketplaces in important ways. 
For example, data supply can be regarded as 
being unlimited because an individual can share 
data access with an unlimited number of data 
buyers. Personal data marketplaces also would 
be asymmetric, since individuals are likely to be 
unaware of the value of their personal data and 
are thus at risk of not being compensated fairly. 
The novelty of personal genomic data further 
compounds these challenges and makes market 
dynamics difficult to predict. We anticipate 
that future research into economics of data 
marketplaces will help answer these and other 
open questions.
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